Groasis Technology compared to drip irrigation

 for landscaping purposesnote: this model does not take into account the full cost of a project, just the differences between using Groasis Waterboxes and drip irrigation.

This document is a template with assumptions
Please ensure that the assumptions are correct for your specific project

Pieter Hoff
phoff@aquaproholland.com
+31 654340410

Remarks
Groasis Technology in comparison with drip irrigation
The project duration is 50 years as treeprojects (vines, olives,avocados, dates, etc.) always are longterm projects
All costs independent from use of Groasis waterboxx or drip irrigation that are equal have not been accounted in this document, so this document does not show all costs of tree plantations
As an example: the cost for a warehouse is not calculated, as for both systems one needs a warehouse
This means that this document cannot be used as a template for tree planting calculations. It focuses only on the financial differences caused by the use of the Groasis Technology compared to drip irrigation

Note: if column C in tab 'assumptions' states $1 / 0$, complete calculation tab lines as following: Yes $=1, \mathrm{No}=0$

PROJECT GENERICS

Project duration	years
Project size	ha
Number of trees per hectare	trees $/$ ha
inflation rate (cost only)	$\%$
starting year	

PROJECT PREPARATION

costs of reversed osmosis plant

EUR/m	5.000 .000
ha/well	7.550
EUR/m	1
$\mathrm{~m} / \mathrm{ha}$	100
EUR/m	10
EUR/m	1,25
tubes/ha	20
$\mathrm{~m} / \mathrm{ha}$	2.000
l/tree/yr	1.500
EUR/l	0,002
EUR	200.000
EUR	500.000
EUR/ha	250
rows/valve/ha	5
rows/ha	20
EUR	250
ha/computer	7.550
kW	500
EUR/kW	0,10
hrs/yr	2.000
hrs/ha	2
EUR	35.000

many hectares per reversed osmosis plant
costs of digging grooves for main tube per meter
meters groove per ha
costs of main tube per meter incl. connection to electric valves
drip irrigation tube costs per meter
number of tubes per hectare
length of tubes per ha
liters of water per tree per year
price of water per liter
price of pump(s) incl. installation for 7550 ha
electricity network per 7550 ha incl. installation
electric valves incl. installation per ha
rows per electric valve per ha
rows per ha
computer system incl. tools
hectares per computer
size of water pump(s)
water pump costprice per kW
pump hours per year for 7550ha
Tractor hours to install drip irrigation per ha
capillary drill cost
35.000

Asset replacement info
drip irrigation tube life \quad yrs $\quad 12,5$
drip irrigation tubes to be replaced in years
electric valve life
yrs
13, 26, 38
electric valves to be replaced in years
water pump life
yrs
pump to be replaced in years
26
computer system life
yrs 25
computersystems to be replaced in years
26
main tube system life
yrs
50
main tube system to be replaced in years
Number of planting holes per capillary drill over life time
holes/drill
1.000 .000

Number of planting holes in project
holes
3.775 .000

Number of additional capillary drills needed
drills

ANTING		
life time of planting with waterboxx	yrs	50
number of replanting with waterboxx over project lifetime		
life time of planting with drip irrigation	yrs	25
number of replanting with drip irrigation over project lifetime		1
tractor cost incl. driver for drilling planting holes	EUR/hr	50
planting holes per hour		120
costs per man hour	EUR/hr	4
planting minutes per tree including assembling waterboxx	$\mathrm{min} /$ tree	8
planting minutes per tree drip irrigation	min/tree	6
man hours to install drip irrigation tubes per row	hr/row	2
man hours to install electric valves per row	hr/row	1
minutes per tree removing waterboxx after one year	min/tree	4
Groasis waterbox ownership model		purchase
Costs of waterboxx (incl. transport)	EUR/box	12
Residual value of waterbox	\%	90\%
Number of years to use the waterboxx	yrs	10
planting material selected for project		seed
costs of planting material for waterboxx from seed	EUR/seed	0,20
costs of planting material for waterboxx from cutling	EUR/cutling	0,30
costs of planting material for waterboxx from cutling plus graft	EUR/cutling+graft	1,00
costs of planting material for drip irrigation from seed	EUR/seed	0,75
costs of planting material for drip irrigation from cutling	EUR/cutling	1,00

Net present value (NPV) is the total present value of a time series of cash flows it measures the excess or shorffall of cash flows in present volue
terms, once financing charges sre met . NPV is an indicator of how much value an investment or project odds for the investor; its san indicator of terms. once financing charges are met. .NPV Is an indicator of how much value an investment or project adds for the investor; it is an indicator of
the value or magitud of an inestenent. The internal rate of return (IRR) is a rate
The intermal rate of return (1RR Is is rate of return used to measure and compare the profitability of investments. The interal 1 rate of return on an
investment is the annualized effective compounded return rate that can be earred on

Maximum project finance needed during project duration
Payback perioc refers to the period of time required for the return on an investment to "repay" the sum of the orignal stment ccapita
employed.

Comparison of annual costs

Comparison of discounted free cash flow

\qquad
Comparison of cumulative free cash flow

[^0]

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	44.939 .049	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	O	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	5.373 .147	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	6.512 .906	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	539	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	3.256 .453	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	2.605 .162	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	1.302 .581	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	6.105.849	0	0	0	0	0	0	0	0	0	0

0		0	0	0	0	0	0	0	0				0
0	64.072 .338	0	0	0	0	0	0	0	0	0	0	0	0
0		0	0	0	0	0	0	0	0	0	0	0	0
0	7.660 .823	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0

$\begin{array}{lllllllllllllllll}33.807 .692 & 34.821 .923 & 35.866 .581 & 36.942 .578 & 38.050 .855 & 39.192 .381 & 40.368 .152 & 41.579 .197 & 42.826 .573 & 44.111 .370 & 45.434 .711 & 46.797 .753 & 48.201 .685 & 49.647 .736\end{array}$ $\begin{array}{lllllllllllll}4.507 .692 & 4.642 .923 & 4.782 .211 & 4.925 .677 & 5.073 .447 & 5.225 .651 & 5.382 .420 & 5.543 .893 & 5.710 .210 & 5.881 .516 & 6.057 .961 & 6.239 .700 & 6.426 .891\end{array}$ 6.619.698

Grọasțs

Risk analysis	
Groasis Technology	Drip irrigation
six year proven technology if growing on rocks lower investment in soil	thirty five year proven technology higher investment in soil
if growing on rocks lower interest costs on capital investment in soil	higher capital costs
No inflation of costs risk	inflation of costs risk
no risk of higher costs for energy	risk of higher energy cost
no risk of lack of availability of ground water	risk of lack of groundwater
no risk caused by political decisions	risk of political decisions
no risk on ban on use of groundwater	risk on ban on use of groundwater if cities have lack of water during periods of drought
no risk on brackish water problems	heavy use of drip irrigation may lead to brackish groundwater, already many areas world wide have been left for this reason
no risk on losing crop if use of groundwater is banned	risk of losing crop if irrigation is banned, this might happen with a severe drought when cities get priority. This might happen in the coming 100 years as a cause of climate change
no risk of rising prices of irrigation water	water price per liter will rise considerably, when price rises from 0,002 euro to 0,02 euro per liter (assumptions cell C23) the cost of water rises to 13bn euro (calc_dripirrigation cell c38). Drip irrigation production will result in an even bigger loss
No risk on soil salination	if irrigation water contains minerals and/or salt, over time the soil will be polluted and also too salted to produce and turn into unusable eternally. This is undoubtedly the case with water from natural sources with high mineral levels, from cleaned sewage water sources of produced from seawater through the reversed osmosis technology. Several formerly fertile zones in California have now been abandoned for this reason. Many cities in the Middle East start to replace the soil where trees are dying as raising the water gift doesn't help anymore. The certain capital loss caused by this reason is unimaginable high and cannot be solved others than by higher water gifts until the conductivity of the soil is higher than that of the roots. Once this level has been reached the plants will die because of draught even if the roots are surrounded by water. See photo.

G̣roasș़̣

Other capacities	
Groasis Technology	Drip irrigation
growing on rocks possible	growing on rocks not possible
sustainable - only in the first year water is used between 20 to 100 liters depending from the growing place	not sustainable - plants are eternally irrigated with scarce goundwater or expensive filtered water through reversed osmosis. Trees in cities in Middle East receive daily 60 to 100 liters per day. This is average $2,920,000$ liters in 100 years. Vines receive between 800 to 1,400 liters per year per plant. This is average 110,000 liters per plant in 100 years. As soon as water is priced, this way of producing is outdated.
less fungicide use = less risk for personel	high fungicide use = higher risk for personel
higher product quality level	lower product quality level
higher sales price for the product because of better internal and external quality	lower sales price
eco label possible	eco label not possible
less complicated management	complicated management
less crop means less wear of machinery/ less use of energy/ less packing material/ lower transportcosts/ etc. / these differences in lower costs are not taken into account in this template	double crop means double wear of machinery/ double use of energy in warehouses/ double packing material/ double transportcosts/ etc. / these differences in higher costs are not taken into account in this template
less crop means necessity of smaller buildings and smaller refrigidator / these differences in costs are not taken into account	double crop means necessity of bigger buildings and bigger refrigidator / these differences in costs are not taken into account
applying waterboxx can be done with low educated people and as the work itself is light, with possibly with females	applying computerized high tech irrigation demands higher educated personel, so less chances for low educated people As applying the technology is heavy work, this work is less appropriate for females

[^0]: -11.832.335-11.832.335-11.832.335-11.832.335-11.832.335-11..832.335-11.832.335 -11.832.335 -11.832.335 -11.832.335-11.832.335-11.832.335-11.832.335-11.832.335-11.832.335-11.832.335-11.832.335-11.832.335-11.832.335

